A numerical scheme for the quantum Fokker-Planck-Landau equation efficient in the fluid regime∗
نویسندگان
چکیده
We construct an efficient numerical scheme for the quantum Fokker-Planck-Landau (FPL) equation that works uniformly from kinetic to fluid regimes. Such a scheme inevitably needs an implicit discretization of the nonlinear collision operator, which is difficult to invert. Inspired by work [9] we seek a linear operator to penalize the quantum FPL collision term QqFPL in order to remove the stiffness induced by the small Knudsen number. However, there is no suitable simple quantum operator serving the purpose and for this kind of operators one has to solve the complicated quantum Maxwellians (Bose-Einstein or Fermi-Dirac distribution). In this paper, we propose to penalize QqFPL by the ‘classical’ linear Fokker-Planck operator. It is based on the observation that the classical Maxwellian, with the temperature replaced by the internal energy, has the same first five moments as the quantum Maxwellian. Numerical results for the Bose and Fermi gases are presented to illustrate the efficiency of the scheme in both the fluid and kinetic regimes.
منابع مشابه
A class of asymptotic-preserving schemes for the Fokker-Planck-Landau equation
We present a class of asymptotic-preserving (AP) schemes for the nonhomogeneous Fokker–Planck–Landau (nFPL) equation. Filbet and Jin [16] designed a class of AP schemes for the classical Boltzmann equation, by penalization with the BGK operator, so they become efficient in the fluid dynamic regime. We generalize their idea to the nFPL equation, with a different penalization operator, the Fokker...
متن کاملPseudo-spectral Matrix and Normalized Grunwald Approximation for Numerical Solution of Time Fractional Fokker-Planck Equation
This paper presents a new numerical method to solve time fractional Fokker-Planck equation. The space dimension is discretized to the Gauss-Lobatto points, then we apply pseudo-spectral successive integration matrix for this dimension. This approach shows that with less number of points, we can approximate the solution with more accuracy. The numerical results of the examples are displayed.
متن کاملNumerical Studies and Simulation of the Lower Hybrid Waves Current Drive by using Fokker – Planck Equation in NSST and HT-7 Tokamaks
Recent experiments on the spherical tokamak have discovered the conditions to create a powerful plasma and ensure easy shaping and amplification of stability, high bootstrap current and confinement energy. The spherical tours (ST) fusion energy development path is complementary to the tokamak burning plasma experiment such as NSTX and higher toroidal beta regimes and improves the design of a po...
متن کاملتحلیل رفتار DNA در گذر از ریز ساختارها بر اساس معادله فوکر-پلانک و مدل سد آنتروپی
We considered the motion of DNA molecules through a hexagonal array under uniform electric fields as a Fokker-Planck process which is affected by the entropic barriers and we have simulated this motion by computer. We solved the Fokker-Planck equation with numerical simulation of the Brownian dynamics by the Euler method. For different DNA molecules, under different physical conditions, the mea...
متن کاملNumerical analysis of the isotropic Fokker-Planck-Landau equation
Homogeneous Fokker-Planck-Landau equation is investigated for Coulombic potential and isotropic distribution function i.e. when the distribution function depends only on time and on the modulus of the velocity. We derive a conservative and entropy decaying semi-discretized Landau equation for which we prove the existence of global in time positive solutions. This scheme is not based on the so-c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011